Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Yin He, ${ }^{\text {a }}$ Long-Guan Zhu ${ }^{\text {a }}$ * and Seik Weng $\mathbf{N g}^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.065$
$w R$ factor $=0.188$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[bis($\mu-4-$ cyanobenzoato- $\left.\kappa^{2} O: O\right)$ -bis[(4-cyanobenzoato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(II)]]-di- $\mu-4,4^{\prime}$-bipyridine- $\left.\kappa^{4} N: N^{\prime}\right]$ dihydrate dimethylformamide tetrasolvate]

The crystal structure of the title compound, $\left\{\left[\mathrm{Co}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4}{ }^{-}\right.\right.\right.$ $\left.\left.\left.\mathrm{NO}_{2}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 4 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right\}_{n}$, features a centrosymmetric eight-membered $-\mathrm{Co}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{Co}-\mathrm{O}-\mathrm{C}-\mathrm{O}-$ ring that arises from the bridging of two Co atoms by two cyanobenzoate units across a center of symmetry. Each Co atom is also chelated by a cyanobenzoate unit and the two remaining coordination sites, trans to each other in the distorted octahedron, are occupied by the N atoms of the heterocycle, resulting in a polymeric ribbon structure. The water and dimethylformamide molecules occupy the space between the chains.

Comment

In the crystal structure of the cobalt(II) derivative of 4cyanobenzoic acid, the anionic units bridge adjacent metal atoms, giving rise to a layer motif. As the metal atom is coordinated by two water molecules, hydrogen-bonding interactions are present that further consolidate a tightly held layer motif (He et al., 2004).

Received 10 January 2005
Accepted 11 January 2005 Online 22 January 2005

The introduction of $4,4^{\prime}$-bipyridine modifies the layer structure to one in which the amine ligand now serves as a bridging entity, but the resulting compound, viz. $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4}\right.\right.$ $\left.\mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], (II), retains its two water molecules in the coordination sphere (He et al., 2003).

A modification of the synthesis of (II), with dimethylformamide/water as solvent in place of methanol, has yielded a compound without water in the cobalt coordination sphere,

Figure 1
View of (I) showing 50\% probability displacement ellipsoids and the H atoms as spheres of arbitrary radius. The water and dimethylformamide molecules are not shown. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) x , $1+y, z$.]
namely catena-poly[[[bis($\mu-4$-cyanobenzoato)bis[(4-cyano-benzoato)cobalt(II)]]-di- $\mu-4,4^{\prime}$-bipyridine] dihydrate dimethylformamide tetrasolvate], (I) (Fig. 1).

In (I), one anion bonds to two Co atoms to form, when inversion symmetry is taken into account, a centrosymmetric eight-membered $-\mathrm{Co}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{Co}-\mathrm{O}-\mathrm{C}-\mathrm{O}-$ ring. Each Co atom is also chelated by a 4-cyanobenzoate anion, resulting in a very acute $\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4$ bond angle (Table 1). The four O atoms surrounding the Co atom approximate to a square plane and the axial coordination sites of the octahedron are occupied by the N atoms of the N -heterocycle, thus forming a polymeric ribbon propagating along [010]. The two pyridyl rings of the heterocycle are twisted with respect to each other by $23.3(3)^{\circ}$.

The solvent (water and dimethylformamide) molecules occupy the space between the chains and may be disordered. There are probable $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecule (Table 2).

Experimental

Cobalt(II) acetate tetrahydrate ($0.125 \mathrm{~g}, 0.5 \mathrm{mmol}$), 4-cyanobenzoic acid $(0.159 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $4,4^{\prime}$-bipyridine $(0.078 \mathrm{~g}, 0.5 \mathrm{mmol})$ were dissolved in an N, N-dimethylformamide (20 ml), methanol $(20 \mathrm{ml}$ and water (10 ml) mixture. Red block-shaped crystals of (I) separated from the solution afer two weeks.

Crystal data


```
    2H2O
M
Monoclinic, P2 / c
a=17.6227 (9) \AA
b=11.3661 (5) \AA
c=17.1939 (7) \AA
\beta=110.011 (2)
V=3236.0(3) \AA}\mp@subsup{}{}{3
Z=2
```


Data collection

Rigaku R-AXIS RAPID	5653 independent reflections
\quad diffractometer	4559 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.050$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-20 \rightarrow 20$
$\quad T_{\min }=0.641, T_{\max }=0.949$	$k=-13 \rightarrow 11$
23077 measured reflections	$l=-20 \rightarrow 20$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0939 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$	$+6.7732 P]$
$w R\left(F^{2}\right)=0.188$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.11$	$(\Delta / \sigma)_{\max }=0.001$
5653 reflections	$\Delta \rho_{\max }=1.06 \mathrm{e} \AA^{-3}$
419 parameters	$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).
$\left.\begin{array}{lrlr}\hline \mathrm{Co} 1-\mathrm{O} 1 & 2.046(3) & \mathrm{Co} 1-\mathrm{O} 4 & 2.211(3) \\ \mathrm{Co} 1-\mathrm{O} 2^{\mathrm{i}} & 2.025(3) & \begin{array}{l}\mathrm{Co} 1-\mathrm{N} 1 \\ \mathrm{Co} 1-\mathrm{O} 3\end{array} & 2.181(3)\end{array}\right)$

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, 1+y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 3$	0.88	2.29	$3.14(2)$	165
O1 $w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 5$	0.89	2.15	$3.02(2)$	165

The methyl H atoms were allowed to rotate to fit the electron density $\left[\mathrm{C}-\mathrm{H}=0.98 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$. The other carbonbound H atoms were positioned geometrically and refined as riding [aromatic C $-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$]. The H atoms of the water molecule were placed at chemically reasonable positions on the basis of possible hydrogen-bonding interactions with O atoms, but their positions were not refined. The structure apparently has some disorder in the two dimethylformamide molecules, but attempts at refinement using split-site models did not lead to a meaningful outcome. Similarly, the refinement of the water molecule as two halfoccupancy water molecules was not undertaken. The largest peak in the final difference Fourier map is about $1 \AA$ from atoms O5 and N5.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 50073019) and the University of Malaya for supporting this study.

metal-organic papers

References

Gao, S., Huo, L.-H., Shu, H. \& Ng, S. W. (2005). Acta Cryst. E61, m290m292.
He, H.-Y., Chen, J., Wang, X.-H. \& Zhu, L.-G. (2004). Acta Cryst. C60, m540m542.
He, H.-Y., Ma, A.-Q. \& Zhu, L. G. (2003). Acta Cryst. E59, m333-m335.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

